Abstract
Conformational changes in yeast enolase were investigated using steady state quenching and dynamic (fluorescence decay and fluorescence anisotropy decay) measurements. The tryptophan fluorescence rotational correlation time increases from 24 to 38 ns on subunit association. The acrylamide quenching constant decreases two-fold when the subunits associate. The conformational metal ion effect suggests a more compact molecule. Under conditions of catalysis, the correlation time decreases 25%, though the sedimentation constant does not change (Holleman, 1973). The enzyme may undergo a hinge-bending motion during catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.