Abstract

Fixed bed adsorption is an economical method of removing harmful gases, such as SO2 and CO2, from industrial flue gas. It is possible to reduce the cost and environmental impact of fixed bed adsorption by repurposing waste materials to be used as adsorbents, such as semi-coke derived from oil shale, a possible alternative to fossil fuels. Fixed bed adsorption systems are difficult and time consuming to characterize experimentally, especially on large scales. Computational fluid dynamics (CFD) can expand researchers understaning of how these systems are affected by material selection and operating conditions. This study uses CFD to characterize fixed bed adsorption of SO2 and CO2. The research primarily focuses on SO2 adsorption on semi-coke, with an extension to CO2 adsorption on commercial carbon. The CFD modeling was able to describe the amount of the pollutants each material was able to adsorb over time based on a variety of inputs on a larger scale than experimental research. The model was further able to give more detailed comparisons of materials and operating conditions than the experiments, particularly the SO2 and semi-coke system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.