Abstract
The results of the harmonic balance method (HBM) for a nonlinear system generally show nonlinear response curves with primary, super-, and sub-harmonic resonances. In addition, the stability conditions can be examined by employing Hill’s method. However, it is difficult to understand the practical dynamic behaviors with only their stability conditions, especially with respect to unstable regimes. Thus, the main goal of this study is to suggest mathematical and numerical approaches to determine the complex dynamic behaviors regarding the bifurcation characteristics. To analyze the bifurcation phenomena, the HBM is first implemented utilizing Hill’s method where various local unstable areas are found. Second, the bifurcation points are determined by tracking the stability variational locations on the arc-length continuation scheme. Then, their points are defined for various bifurcation types. Finally, the real parts of the eigenvalues are analyzed to examine the practical dynamic behaviors, specifically in the unstable regimes, which reflect the relevance of various bifurcation types on the real part of eigenvalues. The methods employed in this study successfully explain the basic ways to examine the bifurcation phenomena when the HBM is implemented. Thus, this study suggests fundamental method to understand the bifurcation phenomena using only the HBM with Hill’s method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.