Abstract
A comprehensive investigation of the SPICE and unified compact noise models is performed by comparison with the more fundamental hierarchical hydrodynamic device model. It is shown that the rather simple SPICE and unified compact noise models yield good results for frequencies up to 10 GHz for state-of-the-art SiGe HBTs with a low base resistance. The base noise resistance, a key parameter of the compact noise models turns out to be independent of frequency and bias. It can be well estimated based on the sheet resistance of the intrinsic and extrinsic base or with the modified circle-fit method. The unified model, which in comparison to the SPICE model considers in addition the finite transit time of shot noise, is found to be somewhat more accurate than the SPICE model, especially at higher frequencies and collector currents. But this is achieved at the expense of a transit time parameter which cannot be determined without accurate and detailed noise measurements or physics-based numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.