Abstract

The present study is carried out to investigate the influence of surface roughness in combined electro-osmotic and pressure-driven flow in microchannel. Two-dimensional theoretical model is developed to predict the behavior of velocity profiles in rough microchannel. The concept of surface roughness-viscosity model is used to account the effect of surface roughness. The pluglike velocity profile for electro-osmotic flow and the parabolic velocity profile for pressure-driven flow with delay in attaining the centerline velocity are observed. It is found that for electro-osmotic flow, the deviation in velocity profile from a flow in a smooth channel occurs near the wall, whereas in pressure-driven flow, such deviation is dominant in the core region. A superposition of pluglike and parabolic velocity profiles is found in combined electro-osmotic and pressure-driven flow. It is also observed that in the case of combined flow, the deviation in velocity profile from the smooth channel case reduces gradually with the distance from the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.