Abstract

Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) with three excitation wavelengths in combination with in situ electrochemical scanning tunneling microscopy (EC-STM) and absorption measurements has been employed to provide comprehensive insights into the electrochemical processes of cobalt phthalocyanine (CoPc) at the solid/liquid interface supported on a Au(111) substrate. As the substrate potential becomes more negative, CoPc molecules form a highly ordered monolayer on the Au(111) surface (>0.1 V) until the ordered-to-diffusing phase transition is triggered (<0.1 V). CoPc molecules in the ordered phase are reduced during cathodic scanning, which leads to a redshift in the resonance condition and gives rise to distinct EC-TERS behaviors which depend on excitation wavelengths. The ordered-to-diffusing phase transition of CoPc molecules results in the disappearance of the EC-TERS signal. The catalytic activity of CoPc for the oxygen reduction reaction (ORR) was not visible in the EC-STM and has negligible effect on the EC-TERS measurements. The comprehensive evidence from EC-TERS, EC-STM, and absorption spectroelectrochemistry clearly demonstrates that partially reduced CoPc molecules are the dominant species under steady state measurements during the oxygen reduction reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call