Abstract

Utilization of hydrocarbon gaseous fuels, such as biogas, landfill gas and others, is a valuable contribution to sustainable energy production and climate changing control. The presence of CO in these gases decreases heat of combustion, flame temperature, 2 flame speed and can induce flame blow-off and combustion instabilities. In order to better understand the problem, flame geometry and location was investigated using chemiluminescence (CH*) imaging technique. Combustion took place in a purposely built, lean, premixed, unconfined swirl burner, fueled by methane and propane diluted with CO . The fuel type, air-to-fuel equivalence ratio and CO content were chosen as the 2 2 independent variables. The CH* imaging by means of a commercial CCD camera, fitted with an optical filter, was used for flame investigation. The analysis of images showed that the CH* emission intensity, flame geometry and location were remarkably affected by the fuel type and the air-to-fuel equivalence ratio, while the CO dilution was of minor 2 importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.