Abstract

ABSTRACT Safranin orange (SO) is a cationic dye widely used in industrial sectors. It becomes a threat to the aquatic ecosystem once it reaches water resources, directly affecting photosynthetic activity and dissolved oxygen rate. In view of this scenario and considering the large production of agro-industrial waste, which provides significant disposal costs and environmental impacts, the agricultural by-products such as mandarin peels (MP) are being used as biosorbent materials. Thus, this work proposed the use of MP for SO adsorption. The material was characterized by SEM, zeta potential, and FTIR analysis, in which it was possible to verify heterogeneous porous morphology, predominantly negative surface, and organic functional groups that facilitate adsorption. The results were promising, wherein the maximum adsorption capacity was 464 mg g–1 (318 K), 0.4 g L–1 adsorbent concentration, 120 min equilibrium time and removal percentage of 84.75%. The experimental data showed a better fit to the Langmuir and pseudo-second order mathematical models. The thermodynamic analysis inferred spontaneous, endothermic, and reversible character for SO adsorption onto MP. The main proposed adsorptive mechanisms were hydrogen bonds, π-interactions, and electrostatic interactions. In addition, the reuse of MP showed good efficiency since the adsorption capacity was maintained above 50% after four cycles (from 77.90 to 41.55 mg g–1). Moreover, when evaluating the effect of pH and ionic strength, it verified that the adsorption efficiency was not reduced. Therefore, when compared with other materials, the versatility and potential applicability of MP as a low-cost adsorbent for wastewater treatment is notable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.