Abstract

The main goal of this research is to predict Young’s modulus of carbon nanotubes using a full non-linear finite element model. Spring elements are used to simulate molecular interactions in atomic structure of carbon nanotube. All interactions are simulated non-linearly. A parametric study is performed to investigate effects of chirality and diameter on the Young’s modulus of single walled carbon nanotubes. Unlike the results of presented linear finite element models, the results of current model imply on independency of Young’s modulus from chirality and diameter. Obtained results from this study are in a good agreement with experimental observations and published data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.