Abstract

In this study, chemical transformations of benzyl ester of О-(phenyl-2-acetamido-2,3-dideoxy-1-thio-β-d-glucopyranoside-3-yl)-d-lactoyl-l-alanyl-d-isoglutamine (SPhMDPOBn) on the fumed silica surface were examined, and the surface complex structure was characterized by temperature-programmed desorption mass spectrometry (TPD-MS), infrared spectroscopy (FTIR) and electrospray ion trap mass spectrometry (ES IT MS). Stages of pyrolysis of SPhMDPOBn in pristine state and on the silica surface have been determined. Probably, hydrogen-bonded complex forms between silanol surface groups and the C = O group of the acetamide moiety NH-(CH3)-C = O…H-O-Si≡. The thermal transformations of such hydrogen-bonded complex result in pyrolysis of SPhMDPOBn immobilized on the silica surface under TPD-MS conditions. The shifts ∆ν of amide I band (measured from 1,626 to 1,639 cm−l for SPhMDPOBn in pristine state) of 33 and 35 cm−l which occurred when SPhMDPOBn was immobilized on the silica surface may be caused by a weakening of the intramolecular hydrogen bonding of the SPhMDPOBn because the interaction with the silica surface as hydrogen bond with silanol groups is weaker than that in associates.

Highlights

  • It has long been known that non-specific stimulation of the immune system can be brought about by exposure to bacteria or components extracted from bacterial cells [1]

  • These stages of pyrolysis result from the existence of SPhMDPOBn in α- and β-anomeric forms

  • Decomposition of thiophenylglycoside of muramyl dipeptide in pristine state occurs within the narrow temperature range from 150°C to 250°C

Read more

Summary

Introduction

It has long been known that non-specific stimulation of the immune system can be brought about by exposure to bacteria or components extracted from bacterial cells [1]. The minimum effective structure responsible for the immunoadjuvant activities of the bacterial cell wall was identified as a sugar-containing peptide of the peptidoglycan component [2,3]. Thioglycosides are less investigated in contrast to O-glycosides. Only three S-alkyl glycosides of MDP, namely, methyl and butyl β-glycosides and hexadecyl S-glycoside, have been obtained [8], 1-thiomuramyl dipeptide itself was found to possess the adjuvant effect close to the action of muramyl dipeptide [8]. For this reason, we synthesized the thioglycosides of MDP

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call