Abstract

Abstract : The feasibility of a novel approach for studying the chemical reactions between metallic nanoparticles and molecular explosives has been demonstrated. This method is based on the production of nanoparticles in a laser-induced plasma and the simultaneous observation of the atomic and molecular emission characteristic of the species involved in the intermediate chemical reactions of the nanoenergetic material in the plasma. Time-resolved, broadband emission of chemical species involved in the reaction of RDX and various metal nanoparticles was observed. The increase in diatomic carbon (C2) and aluminum monoxide (AlO) emission with increasing aluminum (Al) content previously observed during an aluminized-RDX explosion in a shock tube was confirmed using this method. The time-evolution of species formation in the plasma, the effects of laser pulse energy, and the effects of trace metal content on chemical reactions were also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.