Abstract

The salient features of detonation wave propagation in a supersonic flow of a stoichiometric hydrogen-air mixture in plane channels of both constant and variable cross-section are numerically investigated for the purpose of determining the conditions ensuring stabilized detonation. The propagation of a detonation wave formed in a variable-cross-section channel is studied. For different inflow Mach numbers the geometric parameters of a channel providing the detonation combustion stabilization are determined. An investigation of detonation wave stabilization in a supersonic flow of a combustible gas mixture in a plane channel with parallel walls using additional weak discharges is continued. The effects of the flow Mach number, the additional discharge energy, and the discharge location on detonation wave stabilization are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.