Abstract
Ceramic-like coatings with a thickness of up to 40 μm are formed on aluminum composites without additives and with copper additives (1 and 4.5%) in a silicate-alkaline electrolyte by microarc oxidation. The composites are prepared by powder metallurgy (cold pressing and sintering in forevacuum). An increase in the copper concentration in the composites to 4.5% leads to the retardation of anode voltage growth on the initial stage of oxidation corresponding to the formation of a barrier layer. The coatings are studied by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, and X-ray diffraction. The morphology of their surface corresponds to the morphology of the surface of coatings on compact aluminum alloys. According to X-ray photoelectron spectroscopy, a thin 1-μm layer forms on the surface. It consists predominantly of electrolyte components. X-ray diffraction analysis shows that the coatings mainly consist of γ-Al2O3 oxide as well as the η-Al2O3 phase, the peaks of which are broadened. This broadening is characteristic of the amorphous component and may be due to the presence of nanocrystalline regions in the coating structure. In the coatings on the composite Al + 4.5% Cu, mullite Al2SiO5 and copper oxide CuO are also found. The excess aluminum content may be associated with residual unoxidized aluminum inclusions in the structure of the coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.