Abstract

A novel cement–sand-based piezoelectric smart composite was developed for conducting structural health monitoring for civil structures. To overcome the incompatibility between piezoelectric materials and reinforced concrete containing cement and sand, for the first time, sand was used to fabricate the new composite in this study. Two sets of specimens containing 30 and 50 vol% lead zirconate titanate were prepared using normal mixing and spread methods, followed by the characterization of the properties of the composites. The composite exhibited desirable piezoelectric strain and voltage coefficients. Furthermore, the dielectric constant and loss of the composite were also determined. The results indicated that the piezoelectric effect and dielectric constant were enhanced with increasing lead zirconate titanate content. Compressive tests were conducted to study the sensing effect of the composite. The investigation demonstrated the feasibility of using the new composite as sensors in structural health monitoring systems to prevent possible failure of civil structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.