Abstract

In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), and human bone marrow stromal cells (HS-5), following their interaction with silver nanoparticles (AgNPs). When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤80% at a high AgNPs dose (40 µg/mL) to >95% at a low dose (10 µg/mL). We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001) and stiffness (P<0.001) of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.