Abstract

Nano materials are usually difficult to prepare. This work presents a simple way of preparing LiMn 2O 4 nano powders using the high-energy ball milling method. This method has the advantage of producing pure, single-phase and crystalline nano powders. The milling method is carefully controlled to avoid unwanted chemical reactions that may change the stoichiometry of the material. Nano powders of between 30 and 50 nm are obtained. Structural studies of the nano powders, as well as the more conventional micron-sized LiMn 2O 4, are made using X-ray diffraction and neutron diffraction methods. Electrochemical evaluation of the materials is undertaken with a three-probe cyclic voltammetry technique and galvanostatic charge–discharge measurements. Structural studies reveal that not only are the crystallites of the nano powders much reduced in size from the normal powders, but their cell parameters are also smaller. The performance characteristics of the nano material show an improvement over that of the micron-sized material by about 17% in the 1st cycle and 70.6% in the 5th cycle, at which the capacity is 132 mAh g −1. The normal material suffers from severe capacity fading but the nano material shows much improved capacity retention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.