Abstract

In this paper, cavitation and supercavitation around 3D hemispherical head-form body and a conical cavitator were simulated. Dynamic and unsteady behaviors of cavitation were solved using large eddy simulation (LES) and k-ω SST turbulence models, as well as Kunz and Sauer mass transfer models. In addition, the compressive volume of fluid (VOF) method is used to track the cavity interface. Simulation is performed under the framework of the OpenFOAM package. The main contribution of this work is to present a correlation between the cavity length and diameter for hemispherical head-form bodies for the first time. Moreover, we provide a detailed comparison between different turbulence and mass transfer models over a broad range of cavitation numbers, especially in small cavitation numbers, including σ=0.07, 0.05, 0.02 for two cases, which is not reported previously. Our numerical results are compared with the available experimental data and a broad set of analytic relations for the cavity characteristics such as cavity length and diameter with suitable accuracy. Discussions on boundary layer separation and re-entrant jet behavior, which play a significant role in the bubble shedding in the cavity closure region, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.