Abstract

The anodic dissolution of carbon steel in ammonium chloride (NH4Cl) solutions (5, 10, and 20 wt%) is investigated via various electrochemical techniques and other complementary techniques. The polarization measurements reveals that the carbon steel is susceptible to general corrosion. The impedance data taken at various overpotentials shows multiple loops, corresponding to capacitance, inductance, and negative capacitance, and the number of time constants observed is also not the same for various NH4Cl concentrations. From reaction mechanism analysis, a multi-step reaction mechanism with three adsorbed intermediates and three dissolution paths (one chemical path and two electrochemical paths) is proposed to describe the observed patterns in impedance measurements. The surface coverage of intermediate species and the contribution of chemical reaction and electrochemical reaction to the overall corrosion rate are also estimated from the proposed model. The results obtained from field emission scanning electron microscopy and Raman spectroscopy measurements are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.