Abstract
18650-type cells comprising of LiNi0.5Co0.2Mn0.3O2 and LiNi0.9Co0.05Al0.05O2 as cathode blend and graphite as anode are cycled in various SoC ranges. Differing capacity fade is found, indicating that cycling in a medium SoC range results in lower capacity loss and behaves better than including high or low SoC in the cycling ranges. Cycling to low SoC tends to have nonlinear capacity fade (sudden capacity drop). Non-destructive methods, i.e. in situ neutron powder diffraction (NPD) and alternating current (AC) impedance, are employed to study the degradation mechanisms. Lithiated cathode loss and loss of lithium inventory (LLI) are calculated from crystal structure parameters refined from the in situ NPD. LLI is the dominating degradation factor for the differing capacity fade of cells. Lithiated cathode loss and solid electrolyte interphase (SEI) growth are deemed to be main fatigue reasons behind the LLI. By investigating the sensitivity of impedance parameters concerning the change in battery capacity, both ohmic resistance (R0) and SEI resistance (R1) present a linear relationship with the change of capacity for both, linear and nonlinear degradation, i.e. R0 and R1 follow the sudden capacity drop, which is ascribed to the formation of new SEI as evidenced by scanning electron microscopy (SEM) images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.