Abstract

Actinin-1 mutations cause dominantly inherited congenital macrothrombocytopenia (CMTP), with mutations in the actin-binding domain increasing actinin's affinity for F-actin. In this study, we examined nine CMTP-causing mutations in the calmodulin-like and rod domains of actinin-1. These mutations increase, to varying degrees, actinin's ability to bundle actin filaments invitro. Mutations within the calmodulin-like domain decrease its thermal stability slightly but do not dramatically affect calcium binding, with mutant proteins retaining calcium-dependent regulation of filament bundling invitro. The G764S and E769K mutations increase cytoskeletal association of actinin in cells, and all mutant proteins colocalize with F-actin in cultured HeLa cells. Thus, CMTP-causing actinin-1 mutations outside the actin-binding domain also increase actin association, suggesting a common molecular mechanism underlying actinin-1 related CMTP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.