Abstract

The c-axis-aligned crystalline (CAAC) rare earth gadolinium doped aluminum-zinc-oxide (Gd-AZO) thin films sputtered at room temperature are investigated in this work. It is found that the polycrystalline AZO is restructured into CAAC Gd-AZO through gadolinium doping. The X-ray diffraction spectrum and high-resolution transmission electron microscopy images indicate the (002) crystalline orientation of the local Gd-AZO grains. The film-formation mechanism of room-temperature sputtered CAAC Gd-AZO thin films is analyzed. Bottom gate oxide thin film transistors with a Gd-AZO active layer are fabricated by low temperature processes. The devices show preferable electrical properties, such as good I-V characteristics, high uniformity, and excellent bias stress stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.