Abstract

PurposeThe flexible printed circuit (FPC) board with the characteristic of light and thin strengthened confronted the growing miniaturization requirements of the electronic product and the popularity of wearable devices. The reliability of circuit could be influenced by the hole quality of FPC, such as burrs, which is one of the major problem in FPC.Design/methodology/approachIn this paper, micro-drill with a diameter of 0.1 mm was used to drill the double-sided flexible copper clad laminate. The thrust force, the burr and tool wear were investigated. The influencing factors of the height of the burrs were studied. The relationship between the thrust force and the height of the burrs was also explored. Finally, the formation mechanism of burrs was analyzed.FindingsThe entrance burrs were usually less than the exit burrs. The burr height increased with the feed per rotation. The height of the burr increased with the increase of the thrust force for the plastic deformation of the copper foil was dominant. The abrasion of the drill gave rise to increase the height of burr. In micro-hole drilling, the growth of burrs can be suppressed effectively by reducing the clearance between the FPC and the backup plate. The thrust force would be controlled in a certain range to reduce the burr with specific drilling parameters. There existed a certain relationship of Gaussian distribution between the height of the burrs and the thrust force of FPC.Originality/valueThe reliability of the integrated circuit was directly affected by the burrs of the FPC. This research on the formation mechanism of FPC burrs and forecast of burr height provided a firm foundation for further work in the area of improvement of the micro-hole quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call