Abstract

This work presents the systematic studies of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 (CIGS) nanocrystals (NCs) embedded in poly(3-hexylthiophene) matrix. The CIGS NCs of approximately 17 nm in diameter were homogeneously blended with P3HT layer to form an active layer of a photovoltaic device. The blend ratios of CIGS NCs to P3HT, solvent effects on thin film morphologies, interface between P3HT/CIGS NCs and post-production annealing of devices were investigated, and the best performance of photovoltaic devices was measured under AM 1.5 simulated solar illumination (100 mW/cm2).

Highlights

  • Photovoltaic (PV) devices, converting photon into electricity as an elegant and clean renewable energy, have attracted tremendous attentions on research and developments

  • We report a hybrid solar cell based on CIGS NCs with a conjugated polymer P3HT as matrix

  • The peaks at approximates of 27°, 45°, 53°, 65°, and 72° were measured, which were consistent with the standard diffraction data of (112), (220)/ (204), (312)/(116), (400)/(008), and (332)/(316) planes of Cu(In0.5Ga0.5)Se2 the chalcopyrite (JCPDS no. 40–1488), Table 1 Device measurement of P3HT/CIGS NC hybrid solar cells under AM 1.5 at different mixing ratios

Read more

Summary

Introduction

Photovoltaic (PV) devices, converting photon into electricity as an elegant and clean renewable energy, have attracted tremendous attentions on research and developments. Among emerging PV technologies, organic photovoltaic devices (OPV) composed of polymer matrices can be considered as promising third-generation solar cell due to its exceptional mechanical flexibility for versatile applications [1,2]. OPVs suffer from the low carrier mobility issues, which hinder the performance far behind to conventional inorganic solar cells. In order to promote carrier mobility in OPV systems, inorganic semiconductor materials was introduced into OPV as electron acceptor materials, so called hybrid solar cells [5]. Hybrid solar cells utilize an advantage of intrinsically high carrier mobility from inorganic materials in organic matrices. By controlling of inorganic material into nanoscale, which can disclose the unique properties, such as enhanced absorption coefficient owing to quantum confinement [6], relatively high electron mobility, high surface area, and good

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.