Abstract

This research study investigates bubble and liquid circulation patterns in a vertical column photobioreactor (PBR) both experimentally as well as computationally using computational fluid dynamics (CFD). Dispersed gas-liquid flow in the rectangular bubble column PBR are modeled using Eulerian-Lagrangian approach. A low Reynolds number k-epsilon CFD model is used to describe the flow pattern near the wall. A flat surface bubble column PBR is used to achieve sufficient light penetration into the system. Bubble size distribution measurements were completed using a high-speed digital camera. Operating parameters, bubble flow patterns, and internal hydrodynamics of a bubble column reactor were studied, and the numerical simulations presented for the hydrodynamics in a bubble column PBR account for bubble phenomena that have not been sufficiently accounted for in previous research. Bubble size and shape affect the hydrodynamics as does bubble interaction with other bubbles (multiple bubbles in a flow versus single bubbles and wall effects on bubble(s) that are not symmetrical or bubbles not centered on the reactor cross-section). Understanding the bubble movement patterns will aid in predicting other design parameters like mass transfer (bubble to liquid and liquid to bubble), heat transfer (within the PBR and between the PBR and environment surrounding the PBR), and interaction forces inside the PBR. The computational results are validated with experimental data and from current literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call