Abstract

This study aims to explore the biological flow mechanisms in a diseased curved artery during the flow of nano-Bingham–Papanastasiou fluid. The occurrence of stenosis and aneurysm is common in the arterial system, caused by narrowing or dilation of arteries owing to the development of abnormal tissues such as atherosclerotic plaques. The growth of these cells into the lumen of the artery disturbs the flow through the artery. For the treatments of hematological diseases and manufacturing nanoscale biomedical devices, nanofluids are very effective and gaining a lot of attention. In this study, Buongiorno’s nanofluid model is used for nanoscale effects and Bingham–Papanastasiou fluid is employed to study the hemodynamic rheology. An appropriate geometric expression is formulated to project two diseased segments in a curved artery. The coupled nonlinear partial differential equations are formulated for the case of mild stenosis. To solve the governing equations, an explicit finite difference scheme is used. The biological flow mechanisms are depicted through graphs, and flow patterns are presented for important flow parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.