Abstract

Ballistic performance and moldability are two important properties for 3D curved-surface ballistic applications. However, these two properties are contradictory to each other and impossible to improve at the same time, which is a technical issue that needs to be solved urgently in the research for ballistic materials for 3D curved-surface ballistic applications. In order to solve this issue, a new 3D compound structure fabric has been developed as part of our former research and has been shown to provide better ballistic performance with equivalent moldability compared to 3D angle-interlock fabric—a well-known 3D material for 3D curved-surface ballistic applications. Nevertheless, the ballistic performance of this new fabric itself is not clear, and further research is necessary. In this study, the ballistic performance of this new 3D compound structure fabric was investigated via the finite element analysis (FEA) model to examine energy absorption and penetration resistance. A ballistic test was also carried out to verify the results of the FEA model, and this demonstrated that the theoretical model was consistent with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call