Abstract

In this study the effect of different fouling stages of hollow fiber membranes on effective backwashing length in MBR has been investigated. Computational fluid dynamics (CFD) is imported to simulate backwashing process. A multi-physics coupling model for free porous media flow, convective mass transfer and diluted species transport was established. The laser bijection sensors (LBS) were imported to monitor the backwashing solution position inside fiber lumen. Simulation results indicated that membrane fouling degree could change the velocity of backwash solution inside fiber lumen and make a further effect on effective backwash length. The signal variations of LBS are in accordance with the simulation results. The backwashing process can only play an active role when the filtration pressure is below the critical TMP. It can be concluded that backwash duration in industrial applications need to be set based on changes in TMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.