Abstract
Abstract NeuLAND is the neutron detector used by the R3B collaboration, which is part of the NUSTAR collaboration at the FAIR facility. NeuLAND is used for the detection of fast neutrons in the range of 200 MeV- 1000 MeV and is composed of plastic scintillators. Neutrons can undergo hadronic scattering with the scintillator material to produce charged particles, which in turn can be detected by their scintillation light. The high granularity of the detector allows for an accurate reconstruction of the primary interaction points of the neutrons. With these interaction points and with the information from the other detectors in the R3B setup, the reaction at the target can be kinematically reconstructed. This reconstruction is the tool that enables the R3B collaboration to study complex reactions. However, particles produced through reactions of the incoming radioactive beam with other R3B detectors may also enter NeuLAND’s active volume and generate a significant background. In this paper, Monte Carlo simulations are utilized to explore possible reduction techniques of this background. In particular, the reduction of the charged-particle component of this background through the use of a VETO wall is explored for the initial setup of the R3B experiment. The list of physics processes considered and their implementation in the simulations are tested against experimental data to ensure that conclusions about the background reduction are meaningful. Extensive simulations show that the use of a VETO wall is, in many situations, not necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.