Abstract

The band structure calculation for the compound Mn2VGa carried out using the plane wave self-consistent field package with generalized gradient approximation shows that the compound is nearly half-metallic at the equilibrium lattice parameter. However, theoretical investigations have shown that a certain percentage of atomic anti-site disorder can destroy the half-metallic nature of the sample. Hence it is important to quantify the site disorder in these systems. We have deduced the percentage of atomic anti-site disorder from the refinement of the higher angle room temperature (300 K) neutron diffraction (ND) pattern and it was observed to be roughly 8% in our sample. The field variation of resistance recorded at different temperatures shows a positive slope at low temperatures and a negative slope at higher temperatures, indicating the half-metallic character at low temperatures. The ab initio calculations predict a ferrimagnetic ground state for this system. The analysis of the magnetic structure from ND data measured at 6 K yields magnetic moment values of 1.28 μB and −0.7 μB for Mn and V, respectively, confirming the ferrimagnetic ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.