Abstract

As VLSI technology enters the post-Moore era, there has been an increasing interest in asynchronous design because of its potential advantages in power consumption, electromagnetic emission, and automatic speed scaling capacity under supply voltage variations. In most practical asynchronous circuits, a pipeline forms the micro-architecture backbone, and its characteristics play a vital role in determining the overall circuit performance. In this paper, we investigate a series of typical asynchronous pipeline circuits based on bundled-data encoding, spanning different handshake signaling protocols such as 2-phase (micropipeline, Mousetrap, and Click), 4-phase (simple, semi-decoupled, and fully-decoupled), and single-track (GasP). An in-depth review of each selected circuit is conducted regarding the handshaking and data latching mechanisms behind the circuit implementations, as well as the analysis of its performance and timing constraints based on formal behavior models. Overall, this paper aims at providing a survey of asynchronous bundled-data pipeline circuits, and it will be a reference for designers interested in experimenting with asynchronous circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.