Abstract

Currently, green nanotechnology-based approaches using waste materials from food have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the outer peel extract of the fruit Ananas comosus (AC), which is a food waste material. Characterization was done using UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV–visible spectroscopy (at 485 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in AC outer peel extract accountable for the reduction of Ag+ ion and the stabilization of AC-AgNPs was investigated through FT-IR. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AC-AgNPs were evaluated for their antioxidative, antidiabetic, and cytotoxic potential against HepG2 cells along with their antibacterial potential. The results showed that AC-AgNPs are extremely effective with high antidiabetic potential at a very low concentration as well as it exhibited higher cytotoxic activity against the HepG2 cancer cells in a dose-dependent manner. It also exhibited potential antioxidant activity and moderate antibacterial activity against the four tested foodborne pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AC-AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. Further, it has applications in wound dressing or in treating bacterial related diseases.

Highlights

  • Nanotechnology is a modern exploration field that involves design, synthesis, and employment of particles ranging in size from around one to hundred nanometers [1]

  • Biosynthesis of Ananas comosus (AC)-AgNPs was carried out under laboratory condition using the outer peel of AC fruit (Fig 1A), which is basically a food waste material (Fig 1A)

  • The basic structure and morphology of the biosynthesized AC-AgNPs were studied via scanning electronic microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDX) analysis

Read more

Summary

Introduction

Nanotechnology is a modern exploration field that involves design, synthesis, and employment of particles ranging in size from around one to hundred nanometers [1]. A number of physical and chemical methods were established and were widely used for synthesizing silver nanoparticles, considering the application of nanoparticles in biomedical fields [1, 2]. To obtain essential products and to further reduce or eradicate the waste materials produced, green synthesis of the nanoparticle is currently an emphasized area of investigation. Further investigation regarding the application of feasible silver nanoparticlebased approaches is necessary [4]. Nanotechnology is a developing research area encompassing the fields of biology, medicine, and engineering. In this regard, nano-biotechnologyis a unique multidisciplinary field which facilitates the use of nanoparticles in biomedical settings via green approaches [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call