Abstract
In this study, the antimicrobial effects of three different zinc-based nanoparticles, namely zinc oxide (ZnO), zinc chloride (ZnCl2), and zinc ferrite (ZnFe2O4), on food-borne pathogen were investigated. ZnO and ZnCl2 nanoparticles were obtained as commercially, but ZnFe2O4 nanoparticles were produced via sol-gel auto-combustion method. From the XRD results of ZnFe2O4 nanoparticle, it was found that all the peaks agreed with the literature. However, there was also small amount of the secondary phase peaks corresponding to the ferrite (Fe2O3) phases. Significant differences were observed between the inhibition effects of nanoparticles on bacteria in the disc diffusion method (p<0.005), except for the ZnFe2O4 nanoparticle, which has no effect on bacteria at the used dose. ZnO nanoparticle was observed to have the lowest inhibition zone on the Gram-negative bacterium Campylobacter jejuni of inhibition compared to other test bacteria. It was found that ZnFe2O4 had the highest value of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-negative bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers in Life Sciences and Related Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.