Abstract

In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL1 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL2 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against Leishmania donovani was evaluated by MTT assay and the antioxidant activity was performed by Mensor's method. The cell viability percentage and IC50 values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV-Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptorsof the two synthesised ligands, HL1 and HL2 along with their corresponding Co(II) complexes, Co(L1)2 and Co(L2)2. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L1)2 is the most stable and Co(L2)2 is the most electrophilic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.