Abstract

BACKGROUND: The treatment of chronic osteomyelitis, despite the use of new methods, is still an urgent problem. Local use of antibacterial drugs in combination with systemic antibiotic therapy has become popular in recent decades. Autologous bone grafts are considered ideal for bone defects filling. Different methods of allograft preparation may have differences in the rate and duration of antibiotic release. Moreover, it can affect the effectiveness of microbial agent eradication. The study analyzed the differences in the release of gentamicin from different types of allografts in dynamics and methods of preparation: «PerOssal» medium, whole bone allograft soaked in antibiotic, whole bone allograft, welded with an antibiotic, and perforated bone allograft soaked in an antibiotic solution. AIM: The objective of the study was to study the stability of antibiotic release and to determine the effectiveness of local transport systems. Evaluation of the difference in gentamicin release from different types of allografts in dynamics and methods of preparation had been realized: “PerOssal” medium, whole bone allograft soaked in antibiotic, whole bone allograft welded with an antibiotic, and perforated bone allograft, soaked in antibiotic solution. MATERIALS AND METHODS: The research was conducted between September 2020 and March 2021. The experiments were performed on 120 laboratory rabbits (weight – 3000–3500 g, age – 6–8 months), which were divided into four groups (30 animals in each group). Group 1 consisted of animals treated with “PerOssal.” The whole bone allograft soaked in an antibiotic was used in the treatment of animals of Group 2. The whole bone allograft, welded with an antibiotic, was used in the treatment of animals of Group 3. Perforated bone allograft soaked in an antibiotic was used in Group 4. Osteomyelitis of the proximal femur was formed in experimental animals. RESULTS AND DISCUSSION: Statistically insignificant decrease in the concentration of gentamicin was observed by the 7th day in all experimental groups. In rabbits whose bone defect was filled with a whole bone allograft welded with antibiotic and perforated bone allograft impregnated with an antibiotic (Groups 3 and 4), the most stable concentration of gentamicin was noted throughout the study period. Statistically significant differences were revealed between the experimental groups in relation to the dynamics of changes in the concentration of gentamicin in blood plasma. It was found that the group using the biodegradable material “PerOssal” on the 1st day showed a high concentration of the antibiotic in the blood plasma. However, by the 2nd day, a lower concentration of the antibiotic was recorded compared to all comparison groups of the bone allograft. CONCLUSIONS: The results of the analysis of the dynamics of gentamicin concentration may indicate significant differences between the methods of graft preparation, especially in the relationship with antibiotic release into the blood plasma. The most stable antibiotic concentration was registered in the groups of animals that underwent the filling of bone defect using a whole bone allograft welded with an antibiotic and a perforated bone allograft impregnated with antibiotic. A significant decrease of gentamicin concentration in the femur homogenate by the 7th day after transplantation was observed when using a whole bone allograft impregnated with an antibiotic. At the same time, a stable concentration of the antibiotic in the blood plasma was registered. The highest initial antibiotic concentration in the homogenate with a gradual decrease over 7 days was observed when using the antibiotic-impregnated biodegradable material “PerOssal.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call