Abstract

This study investigates the antibacterial and antifungal properties of eight benzene sulfonamide derivatives synthesized and reported in our previous study using a combination of experimental and computational methods. In antimicrobial activity, the MIC values of all the eight tested compounds were approximately 125.00 μg/mL against eight bacterial and three fungal strains. However, the compound 8 was found to exhibit remarkable activity (MIC=31.25 μg/mL) against E. faecalis (bacteria) and C. parapsilosis (fungi) compared to the MIC values of rest of the compounds. Results of in-silico drug-likeness and pharmacokinetic (ADMET) assessment reveal that all the title compounds met the compliance of criteria of drug-likeness rules and exhibited zero violations across. Results of docking study demonstrates that the compound 8 showed the highest binding affinity (-8.7 kcal/mol) among the compounds against S. aureus TyrRS, whereas against S. aureus DHFR, compound 2 exhibited the highest binding afinity of -8.5 kcal/mol. Among the compounds docked against C. albicans DHFR and C. albicans N-myristoyl transferase, compound 8 demonstrated the highest binding affinity of -8 kcal/mol and -8.9 kcal/mol, respectively. The results of antibacterial and antifungal experiments substantiate the predictions made by computational studies and provide empirical evidence of antibacterial and antifungal potential of the reported benzene sulfonamide derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.