Abstract

The diffusion tensor is typically assumed to be positive definite. However, noise in the measurements may cause the eigenvalues of the tensor estimate to be negative, thereby violating this assumption. Negative eigenvalues in diffusion tensor imaging (DTI) data occur predominately in regions of high anisotropy and may cause the fractional anisotropy (FA) to exceed unity. Two constrained least squares methods for eliminating negative eigenvalues are explored. These methods, the constrained linear least squares method (CLLS) and the constrained nonlinear least squares method (CNLS), are compared with other commonly used algebraic constrained methods. The CLLS tensor estimator can be shown to be equivalent to the linear least squares (LLS) tensor estimator when the LLS tensor estimate is positive definite. Similarly, the CNLS tensor estimator can be shown to be equivalent to the nonlinear least squares (NLS) tensor estimator when the NLS tensor estimate is positive definite. The constrained least squares methods for eliminating negative eigenvalues are evaluated with both simulations and in vivo human brain DTI data. Simulation results show that the CNLS method is, in terms of mean squared error for estimating trace and FA, the most effective method for correcting negative eigenvalues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.