Abstract
AbstractThe ultimate performance of ITER has the potential to exceed the nominal levels needed to meet the objectives of the Physics and Technology phases, as outlined in the ITER Terms of Reference. Higher power levels, even with the existing set of physics design rules, may be achievable with modifications to torus components and appropriate additions to the balance of plant. It may also be possible to generate net electric power from a machine the same size as the current ITER baseline, but with a slightly different design. Because of the large investment in ITER and the value of the information gained from its operation to the progress of fusion research, it is important that the operation and performance of the machine be maximized. The greater value of information that could be obtained with more ambitious performance levels must be weighed against the additional costs, technological risks, and safety implications. This study examines the feasibility and implications of a potential third phase, or A...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Fusion Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.