Abstract

The negative environmental impacts of energy production from gas and fossil fuels are causing widespread concern to developed countries. However, electricity production from wind turbines and solar energy systems is evolving rapidly to meet the demand for clean and renewable energy. Integrating renewable energy sources with power conversion systems is an area of intense research. Among possible alternative energy resources, solar photovoltaic (PV) systems are increasingly used for electric power generation because they are eco-friendly, emission-free, and relatively cost-effective. High-gain converters are an essential component utilized mainly in low-voltage renewable energy sources and dc-distribution systems because they provide a high-voltage gain and are more efficient than other step-up converters. Interleaved high-gain dc-dc converters promise efficient energy conversion across a range of applications, including distributed generation and grid integration. This paper presents a performance analysis of an interleaved high-gain dc-dc converter for dc-distributed renewable energy systems with 650 V GaN HEMTs. The converter design with GaN power transistors and SiC Schottky diodes is discussed. The performance of the high-gain converter is examined at different input voltages and output power levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.