Abstract

This paper presents an innovative design method for a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of a transonic compressor is redesigned based on the constant spanwise de-Haller number and diffusion. The design method leads to an unconventional increased axial velocity distribution in tip section, which originates from non-uniform enthalpy distribution assumption. A code is applied to extract the compressor meridional plane and blade-to-blade geometry containing rotor and stator in order to design the blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for the regions near walls to capture the boundary layer effects and behavior. Reynolds-averaged Navier–Stokes equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of the current simulations. Then, the capability of the design method is validated by computational fluid dynamics that is capable of predicting the performance map. The numerical results of the new geometry by representing 11% improvement in efficiency and 19% in total pressure ratio verify the new method advantages. The computational fluid dynamics results also show that the newly designed rotor blades due to a higher velocity in the tip section have a special capacity to increase the loading without any separation. The mass flow reduction is observed in the new geometry, which could be easily improved by changing stagger angle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call