Abstract

In order to design an optimal reinforcement of steel thin-walled beams with composite materials, it is worth analyzing two important, although often overlooked issues, which are the selection of the appropriate thickness of the adhesive layer and the effective anchoring length of the composite tape. This paper, which is part of a wider laboratory study devoted to the strengthening of thin-walled steel profiles, focuses on the second issue. The paper involves a description of laboratory four-point bending tests during which ten thin-walled steel beams made of a rectangular section with dimensions of 120 × 60 × 3 and a length of 3 m were tested. Two beams were taken as reference beams, and the other eight were reinforced using Sika CarboDur S512 carbon fiber composite tape, assuming four different effective anchorage lengths. The impact of the length of the anchoring of the composite tape on the value of the displacements and strains of the tested beams and on the value of the destructive load that caused tape detachment was analyzed. The following phase was numerical analyses carried out in the Abaqus program, which showed high consistency with the results of laboratory tests. In reference to the conducted tests, it was observed that the increase in the anchoring length of the composite tape has a slight impact on the change in the value of strains and displacements in the tested beams. Nevertheless, the increase in the effective anchorage length has a significant impact on the load value at which the composite tapes are detached from the surface of the steel thin-walled beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call