Abstract

AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates.

Highlights

  • AlGaN/GaN high electron mobility transistors (HEMTs) are being investigated for high power high frequency applications as III-nitride (i.e. GaN) materials have high thermal and chemical stability, high breakdown field (>​3 MV/cm, 10 times of that of silicon), and high electron saturation velocity (>​2.5 × 107 cm/s, 2.5 times of that of silicon

  • Performance of AlGaN/GaN HEMTs is governed by the two-dimensional electron gas (2DEG) properties, which forms at the AlGaN-GaN hetero-interface and without the need of any doping – thanks to the high conduction band offset and polarization fields between AlGaN and GaN8

  • To quantify the stress and defectivity, we investigate these stacks using structural, optical and electrical characterization techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high resolution cross-sectional transmission electron microscopy (HR-XTEM), optical microscopy, atomic-force microscopy (AFM), cathodoluminescence (CL), Raman spectroscopy, X-ray diffraction (XRD) {ω/2θ scan, symmetric/asymmetric ωscan, and reciprocal space mapping (RSM)} and Hall effect measurements

Read more

Summary

Introduction

AlGaN/GaN high electron mobility transistors (HEMTs) are being investigated for high power high frequency applications as III-nitride (i.e. GaN) materials have high thermal and chemical stability, high breakdown field (>​3 MV/cm, 10 times of that of silicon), and high electron saturation velocity (>​2.5 × 107 cm/s, 2.5 times of that of silicon). The same AlGaN/GaN HEMT structures need to be grown on Si[111] but with various buffer layers. The same AlGaN/GaN HEMT structures need to be grown on Si[111] but with various buffer layers7 Another important milestone in GaN-on-Si[111] technology is Si[111] wafer-scaling. We grew the same AlGaN/GaN HEMT structures on 200-mm Si[111] substrates using three different buffer layers configurations {such that all wafers are crack-free and have a small bow (

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call