Abstract

Agent-based models have been proven to be quite useful in understanding and predicting the SARS-CoV-2 virus-originated COVID-19 infection. Person-to-person contact was considered as the main mechanism of viral transmission in these models. However, recent understanding has confirmed that airborne transmission is the main route to infection spread of COVID-19. We have developed a computationally efficient agent-based hybrid model to study the aerial propagation of the virus and subsequent spread of infection. We considered virus, a continuous variable, spreads diffusively in air and members of populations as discrete agents possessing one of the eight different states at a particular time. The transition from one state to another is probabilistic and age linked. Recognizing that population movement is a key aspect of infection spread, the model allows unbiased movement of agents. We benchmarked the model to recapture the temporal stochastic infection count data of the UK. The model investigates various key factors such as movement, infection susceptibility, new variants, recovery rate and duration, incubation period and vaccination on the infection propagation over time. Furthermore, the model was applied to capture the infection spread in Italy and France.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call