Abstract

A gas turbine combustion process subjected to high levels of centrifugal acceleration has demonstrated the potential for increased flame speeds and shorter residence times. Ultracompact combustors (UCC) invoke the high-g phenomenon by introducing air and fuel into a circumferential cavity which is recessed radially outboard with respect to the primary axial core flow. Upstream air is directed tangentially into the combustion cavity to induce bulk circumferential swirl. Swirl velocities in the cavity produce a centrifugal load on the flow that is typically expressed in terms of gravitational acceleration or g-loading. The Air Force Institute of Technology (AFIT) has developed an experimental facility in which g-loads up to 2000 times the earth’s gravitational field (“2000 g’s”) have been demonstrated. In this study, the flow within the combustion cavity is examined to determine factors and conditions which invoke responses in cavity g-loads. The AFIT experiment was modified to enable optical access into the primary combustion cavity. The techniques of particle image velocimetry (PIV) and particle streak emission velocimetry (PSEV) provided high-fidelity measurements of the velocity fields within the cavity. The experimental data were compared to a set of computational fluid dynamics (CFD) solutions. Improved cavity air and fuel injection schemes were evaluated over a range of air flows and equivalence ratios. Increased combustion stability was attained by providing a uniform distribution of cavity air drivers. Lean cavity equivalence ratios at a high total airflow resulted in higher g-loads and more complete combustion, thereby showing promise for utilization of the UCC as a main combustor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call