Abstract

Using computational fluid dynamics (CFD) technology, a stable manufacturing method for polymeric nanofiber non-woven fabrics based on an improved melt-blowing method and flash spinning is realized to achieve mass productivity. Subsequently, a method to predict filter efficiency using two production methods based on the effects of thickness, filling rate, and fiber diameter on filtration performance is developed to establish a filter design via CFD technology. CFD models featuring uniform fiber diameters are proposed. Next, the pressure loss and flow resistivity are calculated using CFD flow analysis software, as in a filter experiment. The proposed fiber diameter distribution model yields results similar to the experimental value, and the relationship among filling rate, fiber diameter, and flow resistivity is verified. The non-woven filter fabricated in this study demonstrates superior filtration properties, based on the results. Additionally, a method to satisfy both low pressure loss (low flow resistivity) and high filtration efficiency is discussed. Although the pressure loss increases, the filter yields a value below the standard for high-performance face masks, since the fiber diameter is on the nano-order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.