Abstract

In this paper, laser induced optical breakdown in colloidal nanoparticles was studied by using pump- probe beam technique. Colloidal nanoparticles of Ag (as a good conductor), Al2O3 and TiO2 (with good dielectric properties) were used in this investigation. The optical breakdown was induced by an Nd:YAG laser beam (operating at 1064 nm with pulse duration ∼30 ns). A small portion of the beam was taken by an optical splitter and used as probe beam. The time varying transmission of the probe beam transversely through the plasma was measured during the breakdown process. According to the results, the nanoparticles characteristics and pump beam intensity have significant influence in the breakdown process. Our results also show dissimilar dynamic behaviors for conductor and dielectric nanoparticles at different pump intensity. The results are useful for nanoparticle synthesis by laser ablation in distilled water in which the optical breakdown intensity threshold of ambient water influenced by generated nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call