Abstract

3-(chloro(2-methyl-1H-indol-3-yl)methyl)-2-methyl-1H-indole (MIMI) was chosen for separation and preconcentration of iron (III), copper (II), and zinc by solid-phase extraction (SPE). Ion–MIMI chelates are adsorbed onto synthesized graphene oxide (GO) as adsorbent, eluted with HNO3 and determined by flame atomic absorption spectrometry (FAAS). The adsorption mechanism of titled metal complexes on GO was investigated by using computational chemistry approach based on PM7 semi-empirical potential energy surface. The influences of analytical parameters were investigated. The interference effect of common cations tested did not interfere with the recovery of understudied ions. The preconcentration factor of 312.5 and the detection limits of 0.62, 0.28, and 0.05 ng mL−1 for iron (III), copper (II), and zinc, respectively, were obtained. The developed SPE method was successfully utilized for the determination of trace metal ions in different certified reference materials and real samples (including water, cheese, honey, tomato, leaves of spinach, and milk) by FAAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.