Abstract

ConspectusEven after being in business for at least the last 100 years, research into the field of (heterogeneous) catalysis is still vibrant, both in academia and in industry. One of the reasons for this is that around 90% of all chemicals and materials used in everyday life are produced employing catalysis. In 2020, the global catalyst market size reached $35 billion, and it is still steadily increasing every year. Additionally, catalysts will be the driving force behind the transition toward sustainable energy. However, even after having been investigated for 100 years, we still have not reached the holy grail of developing catalysts from rational design instead of from trial-and-error. There are two main reasons for this, indicated by the two so-called “gaps” between (academic) research and actual catalysis. The first one is the “pressure gap”, indicating the 13 orders of magnitude difference in pressure between the ultrahigh vacuum lab conditions and the atmospheric pressures (and higher) of industrial catalysis. The second one is the “materials gap”, indicating the difference in complexity between single-crystal model catalysts of academic research and the real catalysts, consisting of metallic nanoparticles on supports, promoters, fillers, and binders. Although over the past decades significant efforts have been made in closing these gaps, many steps still have to be taken. In this Account, I will discuss the steps we have taken at Leiden University to further our fundamental understanding of heterogeneous catalysis at the (near-)atomic scale. I will focus on bridging the pressure gap, though we are also working on closing the materials gap. Over the past years, we developed state-of-the-art equipment that is able to investigate the (near-)atomic-scale structure of the catalyst surface during the chemical reaction using several surface-science-based techniques such as scanning tunneling microscopy, atomic force microscopy, optical microscopy, and X-ray-based techniques (surface X-ray diffraction, grazing-incidence small-angle X-ray scattering, and X-ray reflectivity, in collaboration with ESRF). Simultaneously with imaging the surface, we can investigate the catalyst’s performance via mass spectrometry, enabling us to link changes in the catalyst structure to its activity, selectivity, or stability. Although we are currently investigating many industrially relevant catalytic systems, I will here focus the discussion on the oxidation of platinum during, for example, CO and NO oxidation, the NO reduction reaction on platinum, and the growth of graphene on liquid (molten) copper. I will show that to be able to obtain the full picture of heterogeneous catalysis, the ability to investigate the catalyst at the (near-)atomic scale during the chemical reaction is a must.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call