Abstract
Deep Belief Network (DBN) is made up of stacked Restricted Boltzmann Machine layers associated with global weight fine-tuning for pattern recognition. However, DBN suffers from vanishing gradient problem due to the saturation characteristic of activation function. Therefore, the selection of activation function in DBN is critical to reduce the network complexity and improve performance of pattern recognition. Unsaturated activation functions such as rectified linear unit and leaky rectified linear unit were recently proposed to avoid the effect of vanishing gradient for a deep learning neural network. In this paper, we investigated the network performance with both saturated and unsaturated activation functions. Besides that, the randomization of training samples would significantly improve the performance of DBN. The experimental results showed that hyperbolic tangent activation function achieved the lowest error rate which is 1.99% on MNIST handwritten digit dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.