Abstract
Coherent absorption, as the time-reversed counterpart to laser, has been widely proposed recently to flexibly modulate light-matter interactions in two-dimensional materials. However, the multiband coherent perfect absorption (CPA) in atomically thin materials still has been elusive. We exploit the multiband CPA in vertically stacked metal/dielectric/graphene heterostructures via ultraconfined acoustic plasmons which can reduce the photon wavelength by a factor of about 70 and thus enable multiple-order resonances on a graphene ribbon of finite width. Under the illumination of two counter-propagating coherent beams, the two-stage coupling scheme is used for exciting multispectral acoustic plasmon resonances on the heterostructure simultaneously, thereby contributing to the ultimate multiband CPA in the mid-infrared region. The strong dependence of the nearly linear dispersion of acoustic plasmons on the chemical potential in graphene and the separation between the metal and the graphene allows the tunability in spectral positions of absorption peaks. Intriguingly, the absorption of each resonant peak is continuously tuned by varying the relative amplitude of two counter-propagating beams, and even their phase difference, respectively. The maximum modulation depth of 4.46*105 is observed. The scattering matrix is employed to demonstrate the principle of CPA and the finite-difference time-domain (FDTD) simulations are used for elucidating the flexible tunability. More importantly, the multiband coherent absorber is robust to the incident angle, and thus undoubtedly benefits extensive applications on optoelectronic and engineering technology areas for modulators and optical switches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.