Abstract

Organ-on-a-chip as a new technology distinguishes it from animal and cell models at least in three aspects: (1) it responds to drugs' efficacy or toxicity more really by mimicking the human body's fluid microenvironment; (2) it can be used for high throughput screening a large number of compounds; (3) it has physiological accuracy. It is well known that ginsenosides compound K (CK) as a carbohydrate drug has numerous biological activities and physiological functions. However, pharmacokinetic studies of carbohydrate-based CK haven't been performed on organ chips. Here, we established and evaluated the function of single-organ chips and multi-organ chips based on intestinal, vascular, liver, and kidney chips. Each single-organ-on-a-chip performed itself well. Based on organ-on-chips, absorption, metabolism and toxicity of CK were successfully investigated. The pharmacokinetic results of CK provided by chip were consistent with previous reports, demonstrating the reliability of the organ-on-a-chip platform and its potential for use in pharmacokinetic studies of carbohydrate-drugs. As far as we know, this study would be the first report on the pharmacological investigation of carbohydrate drugs on organ-on-a-chip, which provides a theoretical basis for carbohydrate-based drug discovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call